Introduction to BIG DATA and Evolution



The Big data

In information technology, big data is a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications. The challenges include capture, curation, storage,search, sharing, analysis, and visualization. The trend to larger data sets is due to the additional information derivable from analysis of a single large set of related data, as compared to separate smaller sets with the same total amount of data, allowing correlations to be found to "spot business trends, determine quality of research, prevent diseases, link legal citations, combat crime, and determine real-time roadway traffic conditions.

Big data is difficult to work with using relational databases and desktop statistics and visualization packages, requiring instead "massively parallel software running on tens, hundreds, or even thousands of servers". What is considered "big data" varies depending on the capabilities of the organization managing the set, and on the capabilities of the applications that are traditionally used to process and analyze the data set in its domain. "For some organizations, facing hundreds of gigabytes of data for the first time may trigger a need to reconsider data management options. For others, it may take tens or hundreds of terabytes before data size becomes a significant consideration.
 


What is Big Data in Definition

Big data usually includes data sets with sizes beyond the ability of commonly-used software tools to capture, curate, manage, and process the data within a tolerable elapsed time. Big data sizes are a constantly moving target, as of 2012 ranging from a few dozen terabytes to many petabytes of data in a single data set. With this difficulty, a new platform of "big data" tools has arisen to handle sensemaking over large quantities of data, as in the Apache "Hadoop" Big Data Platform.

Examples include Big Science, web logs, RFID, sensor networks, social networks, social data (due to the social data revolution) Facebook has more than 901 million active users generating social interaction data, Internet text (More than 5 billion people are calling, texting, tweeting and browsing websites on mobile phones) and Internet search indexing, call detail records, astronomy, atmospheric science, genomics, biogeochemical, biological, and other complex and often interdisciplinary scientific research, military surveillance, medical records, photography archives, video archives, and large-scale e-commerce.

Technologies used in Big Data

Big data requires exceptional technologies to efficiently process large quantities of data within tolerable elapsed times. A 2011 McKinsey report suggests suitable technologies include A/B testing, association rule learning, classification, cluster analysis, crowdsourcing, data fusion and integration, ensemble learning, genetic algorithms, machine learning, natural language processing, neural networks, pattern recognition, anomaly detection, predictive modelling, regression, sentiment analysis, signal processing, supervised and unsupervised learning, simulation, time series analysis and visualisation. Multidimensional big data can also be represented as tensors, which can be more efficiently handled by tensor-based computation, such as multilinear subspace learning. Additional technologies being applied to big data include massively parallel-processing (MPP) databases, search-based applications, data-mining grids, distributed file systems, distributed databases, cloud based infrastructure (applications, storage and computing resources) and the Internet.

Some but not all MPP relational databases have the ability to store and manage petabytes of data. Implicit is the ability to load, monitor, back up, and optimize the use of the large data tables in the RDBMS.

The practitioners of big data analytics processes are generally hostile to slower shared storage[citation needed], preferring direct-attached storage (DAS) in its various forms from solid state disk (SSD) to high capacity SATA disk buried inside parallel processing nodes. The perception of shared storage architectures—SAN and NAS—is that they are relatively slow, complex, and expensive. These qualities are not consistent with big data analytics systems that thrive on system performance, commodity infrastructure, and low cost.

Real or near-real time information delivery is one of the defining characteristics of big data analytics. Latency is therefore avoided whenever and wherever possible. Data in memory is good—data on spinning disk at the other end of a FC SAN connection is not. The cost of a SAN at the scale needed for analytics applications is very much higher than other storage techniques.

There are advantages as well as disadvantages to shared storage in big data analytics, but big data analytics practitioners as of 2011 did not favour it.



Source: Wikipedia

Labels: